Anol. Calcd. for $(C_4H_8O_8Si)_x$: C, 36.3; H, 6.1; neut. equiv., 132. Found: C, 33.9; H, 6.2; neut. equiv., 130.

Stability of β -cyanoethyl(methyl)polysiloxane oil to siliconcarbon cleavage. Two grams (0.018 equivalent) of the β cyanoethyl oil was refluxed with 50 ml. of 5% sodium hydroxide solution. Ammonia was evolved and the polymer had completely dissolved within 0.5 hr. After 24 hr. the solution was acidified with sulfuric acid (no odor of hydrogen cyanide), diluted to 200 ml., distilled, and the first 100-ml. portion of the distillate was titrated for propionic acid. Another 2-g. portion was refluxed for 24 hr. with 50 ml. of 5% sulfuric acid, diluted, distilled, and titrated. For comparison, 1-g. (0.018 mol.) samples of propionitrile were treated in the same manner.

SCHENECTADY, N. Y.

[CONTRIBUTION FROM MATERIALS LABORATORY, WRIGHT AIR DEVELOPMENT CENTER]

Organosilicon Compounds. I. Synthesis of Some Long-Chain Tetraalkylsilanes¹

HAROLD ROSENBERG, JAMES D. GROVES, AND CHRIST TAMBORSKI

Received September 10, 1958

The preparation of several series of unsymmetrical tetraalkylsilanes and one series of mixed symmetrical tetraalkylsilanes by the reaction of the appropriate n-alkylchlorosilane with n-alkyllithium compounds is described. Certain of the physical properties of the products are presented and discussed. Many of the silanes synthesized exhibit extremely wide liquidus range and may be considered representative of a new class of thermally stable fluids.

A number of symmetrical tetraalkylsilanes of the type R_4Si^{2-10} have been reported since Friedel and Crafts¹¹ first prepared tetraethylsilane in 1863. In connection with a program to develop high-temperature fluids, however, it was of interest to investigate the synthesis and properties of unsymmetrical and mixed symmetrical tetraalkylsilanes of the type $RSiR'_3$ and $R_2SiR'_2$ to determine the structural requirements for optimum liquidus range. Compounds representative of these two types have been previously prepared by the reactions of the Grignard reagents with alkylchlorosilanes,¹²⁻¹⁵

- (5) W. C. Schumb, J. Ackerman, and C. M. Saffer, J. Am. Chem. Soc., 60, 2486 (1938).
 - (6) F. Taurke, Ber., 38, 1661 (1905).
- (7) A. Petrov and E. A. Chernyshev, Bull. Akad. Nauk S.S.S.R., 99, 1082 (1952).
- (8) H. Gilman and R. K. Ingham, J. Am. Chem. Soc., 77, 1680 (1955).
- (9) H. Gilman and D. Miles, J. Org. Chem., 21, 254 (1956).
- (10) S. D. Rosenberg, J. J. Walburn, T. D. Stankovich, A. E. Balint, and H. E. Ramsden, J. Org. Chem., 22, 1200 (1957).
 - (11) C. Friedel and J. M. Crafts, Ann., 127, 28 (1863).
- (12) A. Bygden, Ber., 44B, 2640 (1911); Ber., 45B, 707 (1912); Inaugural Dissertation, Uppsala (1916); Chem. Abstr., 14, 974 (1920).
- (13) F. C. Whitmore, L. H. Sommers, P. A. DiGiorgio, W. A. Strong, R. E. Van Strien, D. L. Bailey, H. K. Hall, E. W. Pietrusza, and G. T. Kerr, J. Am. Chem. Soc., 68, 475 (1946).
- (14) L. H. Tyler, L. H. Sommers, and F. C. Whitmore, J. Am. Chem. Soc., 69, 981 (1947).

by alkyllithium compounds with trialkylsilanes¹⁶ and alkyllithium compounds with alkylalkoxy-silanes.¹⁷

 $4-n \operatorname{RMgX} + \operatorname{R'_nSiCl_{4-n}} \longrightarrow \operatorname{R_n'SiR} 4-n + 4-n \operatorname{MgXCl}$ RLi + R'_3SiH \longrightarrow RSiR'_3 + LiH $4-n \operatorname{RLi} + \operatorname{R'_nSiCl_{4-n}} \longrightarrow \operatorname{R'_nSiR_{4-n}} + 4-n \operatorname{LiCl}$

In an effort to extend the synthesis of both unsymmetrical (RSiR'₃) and mixed symmetrical (R₂SiR'₂) tetraalkylsilanes as classes, it was thought desirable to modify and combine the general methods of Bygden¹² and Gilman¹⁶ in order to use the more reactive organolithium compounds (as compared to Grignard reagents) for obtaining increased yields with alkylchlorosilanes. Two series of longchain tetraalkylsilanes of the type, RSiR'₃, and one series of the type, R₂SiR'₂, were thus prepared by the reaction of an appropriate *n*-alkylchlorosilane with various *n*-alkyllithium compounds.

- $n-C_{12}H_{25}SiCl_3 + 3-RLi \longrightarrow n-C_{12}H_{25}SiR_3 + 3LiCl$
- $n-C_{18}H_{37}SiCl_3 + 3-RLi \longrightarrow n-C_{15}H_{37}SiR_3 + 3LiCl_3$
- $(n-C_{12}H_{25})_2SiCl_2 + 2-RLi \longrightarrow (n-C_{12}H_{25})_2SiR_2 + 2LiCl$

For the present study, *n*-dodecyl and *n*-octadecyl were chosen as typical examples of long-chain moieties while normal alkyl groups of from one to eighteen carbon atoms in length (with the exception of $n-C_{13}H_{27}$, $n-C_{15}H_{31}$, and $n-C_{17}H_{35}$) were selected for the other alkyl substituents.

(17) E. Larsson and E. van Gilse van der Pals, Svensk Kem. Tidskr., 63, 179 (1951); Chem. Abstr., 46, 2516 (1952).

⁽¹⁾ Presented in part before the Division of Organic Chemistry at the 126th National Meeting, American Chemical Society, New York, N. Y., September 1954.

⁽²⁾ C. Friedel and J. M. Crafts, Bull. soc. chim., 6, 356 (1865).

⁽³⁾ C. Page, Ber., 14, 1872 (1881).

⁽⁴⁾ C. L. Tseng and T. Y. Chao, Science Repts. Natl. Univ. Peking, 1, 21 (1936).

⁽¹⁵⁾ A. D. Petrov and E. A. Chernyshev, *Doklady Akad.* Nauk, S.S.S.R., 86, 737 (1952).

⁽¹⁶⁾ H. Gilman and S. P. Massie, Jr., J. Am. Chem. Soc., 68, 1128 (1946); R. N. Meals, J. Am. Chem. Soc., 68, 1880 (1946).

Di(n-dodecyl)dimethyl- and di(n-dodecyl)diethylsilane were prepared by a reverse procedure to that utilized for the synthesis of the other di(ndodecyl)dialkylsilanes. Thus, dimethyldichloroand diethyldichlorosilanes were treated with ndodecyllithium to give the corresponding tetraalkylsilanes in excellent yields. Although not a tetraalkylsilane, one aryl derivative, di(n-dodecyl)diphenylsilane, was similarly obtained from diphenyldichlorosilane and the alkyllithium.

When isopropyllithium was treated with *n*dodecyltrichlorosilane under more vigorous conditions than those which were normally used for the preparation of the other tetraalkylsilanes, a mixture of products was obtained and the desired *n*dodecyltri(isopropyl)silane could not be isolated.¹⁸ Similarly, the reaction of cyclohexyllithium with *n*-dodecyltrichlorosilane failed to yield the expected cyclohexyl derivative.¹⁹

The yields, physical properties and analytical data for the two series of unsymmetrical tetraalkyl silanes are presented in Table I. The yields of 65–96% were somewhat lower than those obtained for the synthesis of symmetrical tetraalkylsilanes,²⁰ but were definitely superior to those obtained for unsymmetrical tetraalkylsilanes by the Grignard method.^{12,13} In the case of the mixed symmetrical tetraalkylsilanes, the yields, as shown in Table II, ranged for 61–90% and were similarly superior to those obtained by other workers for related compounds of this type.^{12,15,17}

EXPERIMENTAL

Materials. The *n*-alkyllithium compounds were prepared from Distillation Products, Inc. White Label *n*-alkyl bromides with the exception of those synthesized from 1-bromononane and 1-bromohendecane. The 1-bromononane was obtained in 59% yield by a Hundsdiecker reaction from capric acid while the 1-bromohendecane was prepared from *n*-undecanol and phosphorus tribromide in 61% yield.

n-Dodecyltrichlorosilane. The method used was a modification of that used by Whitmore.¹³ To 79 g. (3.3 mol.) of magnesium turnings in 1250 ml. of anhydrous ethyl ether was added dropwise with stirring 777 g. (3.0 mol.) of *n*-bromododecane. The reaction was initiated by the addition of a small amount of previously prepared ethylmagnesium bromide. The mixture was stirred for an additional hour after all of the halide had been added. The yield of *n*-dodecyl-

magnesium bromide was 74.2% as determined by acid titration.

To a stirred solution of 382.5 g. (2.25 mol.) of redistilled silicon tetrachloride in 2 l. of anhydrous ethyl ether was added dropwise the Grignard reagent prepared above. The mixture was refluxed 12 hr. and the magnesium salts were filtered. After removal of the ether by distillation, additional salts were precipitated and filtered. The residue was fractionated *in vacuo* through a 24-in. column, packed with glass helices, to give 453 g. (66.5%) of *n*-dodecyltrichlorosilane, b.p. 82°/0.15 mm., n_D^{25} 1.4522. This compares with the 29% yield (no refractive index) obtained by Whitmore¹³ for this compound.

n-Octadecyltrichlorosilane. This compound was prepared in 51% yield by the same method used for the synthesis of *n*-dodecyltrichlorosilane. The physical properties were found to be in agreement with those obtained for the compound prepared by other procedures.

Di(n-dodecyl)dichlorosilane. The dialkyldichlorosilane starting material was prepared by a procedure similar to that described for the preparation of disubstituted dihalosilanes.²¹ To 182 g. (1.07 mol.) of silicon tetrachloride in 1200 ml. of anhydrous ethyl ether contained in a 5-l., 3 necked round bottomed flask fitted with a condenser, stirrer, and dropping funnel was added dropwise a 2200 ml. ethereal solution containing 2.85 moles of n-dodecylmagnesium bromide. The Grignard reagent was added with stirring over a period of 7 hr. and then gently refluxed overnight with continued stirring. The mixture was then filtered with suction and the salts were washed several times with anhydrous ethyl ether. The washings were added to the filtrate. After removal of the ether, the residue was fractionally distilled through a 12-in. column packed with glass helices. There was obtained 78.8 g. (16.8%) of the product, di(*n*-dodecyl) dichlorosilane, as a colorless liquid, b.p. 192° (0.23 mm.), n_D^{25} 1.4600. If after one half the Grignard reagent is added, 1 hr. is allowed to elapse before the remainder is added dropwise, the yield of product can be increased to 40-50%.

n-Dodecyltrialkyl (I) and n-Octadecyltrialkylsilanes (II). The method for the preparation of both series is illustrated by the synthesis of n-dodecyltri(n-propyl)silane. To a solution of 0.82 mol. of n-propyllithium (prepared by the same general method²² used for the n-dodecyllithium previously described) in 550 ml. of anhydrous ether and maintained under a nitrogen atmosphere, 75.8 g. (0.25 mol.) of freshly distilled *n*-dodecyltrichlorosilane in 100 ml. of anhydrous ether was added dropwise with stirring. A constant reflux temperature of 34-35° was maintained throughout the addition which was complete in 90 min. The reaction mixture was refluxed for 24 hr. and the unreacted lithium filtered off. The filtrate was poured over 600 g. of cracked ice and the resulting solution was neutralized with 3N hydrochloric acid. The ether layer was phase separated, the water layer extracted three times with ethyl ether, and the combined ether layer and extracts were dried over anhydrous calcium sulfate. Following removal of the solvent by distillation, fractionation of the yellow liquid residue through a 30-cm. short-path Vigreux column gave 66.2 g. (81.1%) of ndodecyltri(n-propyl)silane, b.p. 88° (0.09 mm.), n_D²⁵ 1.4504, d_4^{25} 0.8069. See Table I for analysis.

Di(n-dodecyl)dialkylsilanes (III). The method for the preparation of this series is illustrated by the synthesis of di(*n*-dodecyl)di(*n*-hexyl)silane. To a solution of 0.7 mol. of *n*-hexyllithium (prepared by the general procedure of Gilman and co-workers,²² and the yield determined by the double titration method²³) in 200 ml. of anhydrous ethyl ether was added dropwise with stirring 78.0 gm. (0.18 mol.) of di(*n*-

⁽¹⁸⁾ Gilman and Clark, J. Am. Chem. Soc., 69, 1499 (1947), reported they were unable to prepare tetra(iso-propyl)silane from silicon tetrachloride and isopropyllithium.

⁽¹⁹⁾ This result was not entirely unexpected since Nebergall and Johnson [W. H. Nebergall and O. H. Johnson, J. Am. Chem. Soc., 71, 4022 (1949)] were unable to replace the chlorine in tricyclohexylsilane with methyl and ethyl groups. This failure was apparently due to steric effects arising from the crowding of three cyclohexyl groups around the silicon atom. In the case of germanium, unlike silicon, alkyltricyclohexylgermanes may be prepared [O. H. Johnson and W. H. Nebergall, J. Am. Chem. Soc., 71, 1721 (1949)], presumably because of the increased size of the germanium atom.

⁽²⁰⁾ H. Gilman and R. N. Clark, J. Am. Chem. Soc., 68, 1675 (1946); cf. J. Am. Chem. Soc., 69, 967 (1947).

⁽²¹⁾ K. W. Palmer and F. S. Kipping, J. Chem. Soc., 1020 (1930).

⁽²²⁾ H. Gilman et al., J. Am. Chem. Soc., 71, 1499 (1949).

⁽²³⁾ H. Gilman and A. H. Haubein, J. Am. Chem. Soc, 66, 1515 (1944).

TABLE I	FETRAALKYLSILANES, $RSiR'_{3}$
	UNSYMMETRICAL

B.P. MILD Carbon, $\sqrt{6}$ Hydrogen, $\sqrt{6}$ Hydrogen, $\sqrt{6}$ Ducon, $\sqrt{6}$ Ducon, $\sqrt{6}$ Hydrogen, $\sqrt{6}$ Ducon, $\sqrt{6}$ D	d_{4}^{25} MR_{0} Carbon, $\%$ Hydrogen, $\%$ Bundled, Found Caled. Found	Mm. $n_{55}^{a_5}$ $d_{78}^{a_5}$ MMo Carbon, $\sqrt{6}$ Hydrogen, $\sqrt{6}$ Autorogen, $\sqrt{6}$ Autorogen 0.05 11.4594 0.8015 151.0 150.0 150.0 130.1 14.13 137.3 136.3 76.62 0.0 14.450 0.8015 14.435 7.62 0.0 14.450 0.8015 14.435 14.235										5	Anal	Analyses ^a		oelt-	E
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$d_1^{2.5}$ Caled. Found Caled.	Yield,	Yield,						W	$\mathbf{R}_{\mathbf{D}}$	Carbo	on, %	Hydro	gen, %	Silico	n, %
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.7782 81.32 74.29 74.35 14.13 13.87 11.58 1 0 0.8038 95.26 95.06 75.96 76.07 14.17 13.98 9.87 0 0.8095 123.1 123.1 78.17 77.06 14.17 13.98 9.87 0 0.8095 123.1 123.1 78.17 79.09 13.22 13.97 6.84 0 0.8170 151.0 150.8 79.56 79.03 14.23 13.97 6.84 0.8170 151.0 150.8 79.56 79.03 14.26 14.35 7.62 0.8245 192.9 178.7 80.56 81.59 14.26 14.35 5.67 0.8255 206.8 206.6 81.20 81.37 14.26 14.30 4.55 13 0.8255 206.8 81.59 14.26 14.30 4.55 5.67 13 0.8255 206.8 81.59 14.26 14.30 4.55 5.67 13 0.8255 206.8 81.37	R' Formula 70			B.P.	Mm.	$n_{ m D}^{25}$	d_{4}^{25}	Caled.	Found	Caled.	Found	Caled.	Found	Calcd.	Found
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 0.8038 95.26 95.06 75.96 76.07 14.17 13.98 9.87 M 0.8069 109.2 108.8 77.21 77.06 14.19 13.90 8.60 M 0.8095 123.1 123.1 78.17 79.09 13.73 7.62 65 0.8170 151.0 150.8 79.56 79.03 14.23 13.97 6.84 65 0.8187 165.0 150.8 79.56 79.03 14.23 13.97 6.20 64 0.8187 165.0 150.8 79.66 79.32 13.97 14.35 5.67 64 0.8235 1092.9 192.6 80.50 80.15 14.27 14.31 4.52 60.8245 1922.9 192.71 80.50 80.15 14.27 14.41 3.66 13 0.8255 206.6 81.73 81.20 81.35	5 0.8038 95.26 95.06 75.96 76.07 14.17 13.98 9.87 0 0.8069 109.2 108.8 77.21 77.06 14.19 13.90 8.60 0 0.8095 123.1 123.1 73.17 77.06 14.19 13.73 7.62 16 0.8170 151.0 150.8 79.05 79.03 14.24 13.97 6.84 16 0.8170 151.0 150.8 79.56 79.03 14.24 13.97 6.84 16 0.8170 151.0 150.8 79.56 79.03 14.26 14.30 6.20 17 0.8245 192.9 178.7 80.56 80.60 14.27 14.41 4.85 13 0.8255 206.6 81.20 81.37 14.26 14.30 4.52 13 0.8256 270.5 81.48 82.31 14.26 14.30 4.55 13 0.8256 206.6 81.23 81.37 14.26 14.30 4.55 13 0.8256	Ŭ	75		69		1.4350	0.7782	81.32	81.32	74.29	74.35	14.13	13.87	11.58	11.31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	# 0.8069 109.2 108.8 77.21 77.06 14.19 13.90 8.60 8 0.8144 137.11 138.8 78.17 79.09 13.22 13.73 7.62 6 0.8095 123.1 138.8 78.17 79.09 13.22 13.73 7.62 6 0.8170 151.0 150.8 79.56 79.03 14.25 14.35 5.67 6 0.8187 165.0 165.1 80.07 80.15 14.26 14.35 5.67 6 0.8224 192.9 192.4 80.80 81.59 14.26 14.36 5.23 10 0.8245 192.9 192.4 80.88 81.59 14.27 14.41 4.85 13 0.8255 206.6 81.20 81.37 14.23 14.41 4.85 10 0.8245 178.9 192.9 192.4 80.88 81.53 14.41 4.85 10 0.8255 206.6 81.20 81.37 14.28 14.41 4.85 10	CIBH40Si 96	96		95		1.4495	0.8038	95.26	95.06	75.96	76.07	14.17	13.98	9.87	9.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0 0.8095 123.1 123.1 78.17 79.09 13.22 13.73 7.62 66 0.8144 137.1 136.8 78.93 79.03 14.23 13.97 6.84 65 0.8170 151.0 150.8 79.56 79.82 14.24 13.95 6.20 64 0.8187 165.0 165.1 80.07 80.15 14.26 14.35 5.67 65 0.8224 178.9 178.7 80.60 14.26 14.30 5.23 6 0.8245 192.9 192.4 80.85 81.59 14.26 14.30 5.23 6 0.8245 192.9 192.4 81.20 81.37 14.28 14.60 4.52 13 0.8255 206.6 81.20 81.37 14.41 4.65 4.52 13 0.8263 178.0 81.73 81.83 14.30 14.41 3.66 16 0.8264 206.6 81.73 81.83 14.30 14.41 3.65 16 0.8263 178.0	Ŭ	81		88		1.4504	0.8069	109.2	108.8	77.21	77.06	14.19	13.90	8.60	8.49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8 0.8144 137.1 136.8 78.93 79.03 14.23 13.97 6.84 55 0.8170 151.0 150.8 79.56 79.82 14.24 13.97 6.84 56 0.8170 151.0 150.8 79.56 79.82 14.24 13.95 6.20 54 0.8127 165.0 165.1 80.07 80.15 14.24 13.95 6.20 56 0.8224 178.9 178.7 80.50 80.60 14.26 14.30 5.23 0 0.8245 192.9 192.4 80.88 81.59 14.26 14.30 5.23 13 0.8255 206.6 81.20 81.37 14.28 14.100 4.23 13 0.8256 230.6 81.48 82.24 14.30 14.41 3.56 16 0.8276 234.4 81.73 81.47 14.26 14.20 5.23 16 0.8263 178.0 80.50 80.51 14.41 3.56 4.55 18 0.8264 234.7	H, C.H.Si 79	62		86		1.4530	0.8095	123.1	123.1	78.17	79.09	13.22	13.73	7.62	7.30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 0.8170 151.0 150.8 79.56 79.82 14.24 13.95 6.20 54 0.8187 165.0 165.1 80.07 80.15 14.26 14.35 5.67 56 0.8224 178.9 178.7 80.07 80.15 14.26 14.35 5.23 50 0.8224 178.9 178.7 80.50 80.60 14.26 14.30 5.23 50 0.8255 206.6 81.20 81.59 14.28 14.53 4.55 51 0.8256 206.6 81.20 81.83 114.28 14.41 4.85 50 0.8268 231.4 81.73 81.83 114.30 14.41 3.66 50 0.8263 178.0 80.50 80.61 14.26 14.20 4.52 51 0.8264 266.0 81.73 81.83 14.40 4.65 23 50 0.8264 234.7 234.4 81.73 81.47 14.26 4.52 51 0.8264 234.7 234.3 81.47	Ť	16		152		1.4548	0.8144	137.1	136.8	78.93	79.03	14.23	13.97	6.84	7.23
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 0.8187 165.0 165.1 80.07 80.15 14.26 14.35 5.67 5 0.8224 178.9 178.7 80.50 80.60 14.26 14.35 5.23 0 0.8245 192.9 192.4 80.85 81.59 14.26 14.30 5.23 13 0.8255 206.8 206.6 81.20 81.37 14.28 14.53 4.52 19 0.8268 220.8 206.6 81.73 81.83 14.100 4.123 30 0.8266 231.7 234.4 82.14 82.14 82.34 14.30 4.52 30 0.8268 270.6 82.14 82.14 82.14 3.66 4.52 30 0.8263 178.9 178.8 14.26 14.20 4.52 30 0.8264 276.0 81.73 81.47 14.26 14.20 5.23 31 0.8294 234.7 234.3 81.73 81.47 14.26 4.52 32 0.8294 234.7 381.65 14.28	Ī	87		165	0.07	1.4565	0.8170	151.0	150.8	79.56	79.82	14.24	13.95	6.20	6.38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 0.8224 178.9 178.7 80.50 80.60 14.26 14.30 5.23 0 0.8245 192.9 192.4 80.88 81.59 14.27 14.41 4.85 13 0.8255 206.8 206.6 81.20 81.37 14.28 14.63 4.52 19 0.8256 220.8 206.6 81.20 81.37 14.41 4.85 19 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.96 30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.96 30 0.8294 206.6 81.20 80.71 14.26 14.26 5.23 31 0.8294 206.0 81.23 81.47 14.26 14.26 3.96 32 0.8294 234.7 234.3 81.73 81.65 14.26 3.96 32 0.8294 234.7 234.8 82.14 82.25 14.26 3.96 32 0.8294 26.2.6 26.2.4 <td>CarH₇₀Si 92</td> <td></td> <td>64</td> <td>212</td> <td>0.10</td> <td>1.4584</td> <td>0.8187</td> <td>165.0</td> <td>165.1</td> <td>80.07</td> <td>80.15</td> <td>14.26</td> <td>14.35</td> <td>5.67</td> <td>5.94</td>	CarH ₇₀ Si 92		64	212	0.10	1.4584	0.8187	165.0	165.1	80.07	80.15	14.26	14.35	5.67	5.94
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0.8245 192.9 192.4 80.88 81.59 14.27 14.41 4.85 13 0.8255 206.8 206.6 81.37 14.28 14.53 4.52 19 0.8268 220.8 81.37 14.28 14.63 4.53 4.53 30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.98 30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.98 30 0.8294 262.6 82.14 82.24 14.20 5.23 30 0.8294 206.0 81.73 81.47 14.26 5.23 31 0.8294 206.0 81.23 81.47 14.26 5.23 32 0.8294 206.0 81.27 81.47 14.28 14.51 5.23 32 0.8294 206.0 81.73 81.65 14.26 5.23 32 0.8294 262.6 262.4 82.16 14.26 3.96 40 0.8301	CaeHreSi 95	95	C.4	21		1.4595	0.8224	178.9	178.7	80.50	80.60	14.26	14.30	5.23	5.22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 0.8255 206.8 206.6 81.20 81.37 14.53 4.52 19 0.8268 220.8 220.5 81.48 82.31 14.28 14.00 4.23 30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.96 38 0.8294 262.6 82.14 81.73 81.83 14.20 5.23 39 0.8263 178.9 178.0 80.50 81.47 14.26 14.20 5.23 30 0.8263 178.9 176.0 81.47 14.26 14.20 5.23 31 0.8264 234.7 234.3 81.65 14.20 5.23 32 0.8294 236.5 81.65 14.20 5.23 32 0.8294 234.7 381.65 14.45 3.96 40 0.8304 262.4 82.14 82.25 14.30 14.45 3.98 40 0.8304 262.4 82.48 82.50 14.31 14.35 3.26 40 0.8304	C ₃₉ H _{s2} Si 77	22	C I	35		1.4600	0.8245	192.9	192.4	80.88	81.59	14.27	14.41	4.85	4.29
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	19 0.8268 220.8 220.5 81.48 82.31 14.28 14.00 4.23 30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.96 38 0.8204 262.6 82.14 82.24 14.30 14.41 3.56 39 0.8263 178.9 178.0 80.50 80.71 14.26 14.20 5.23 39 0.8264 206.0 81.20 80.71 14.26 14.20 5.23 38 0.8284 206.0 81.20 81.47 14.26 14.45 3.56 32 0.8294 234.7 234.3 81.73 81.65 14.46 3.98 32 0.8294 234.7 234.3 81.73 81.65 14.45 3.98 40 0.8304 262.6 262.4 82.14 82.25 14.30 14.45 3.98 41 18.3 14.3 14.23 3.24 3.98 3.98 3.98 42 0.8301 262.6 262.4 82.14	C42HaSi 95	95	21	40		1.4613	0.8255	206.8	206.6	81.20	81.37	14.28	14.53	4.52	4.81
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30 0.8276 234.7 234.4 81.73 81.83 14.30 14.31 3.98 38 0.8294 262.6 262.6 82.14 82.24 14.41 3.56 90 0.8263 178.9 178.0 80.50 80.71 14.41 3.56 91 0.8264 262.6 82.14 82.24 14.20 5.23 18 0.8284 206.0 81.20 81.47 14.26 14.20 5.23 18 0.8284 206.0 81.20 81.47 14.26 14.45 3.96 19 0.8294 234.7 234.3 81.73 81.65 14.45 3.98 10 0.8304 262.6 262.4 82.14 82.25 14.30 14.45 3.98 10 0.8301 262.6 262.4 82.14 82.25 14.30 14.45 3.98 10 0.8301 262.6 200.1 82.48 82.250 14.31 14.26 3.26 18 0.8321 290.5 290.1 82.48 82.50 <td>C4sH4Si 65</td> <td>65</td> <td>3</td> <td>68</td> <td></td> <td>1.4619</td> <td>0.8268</td> <td>220.8</td> <td>220.5</td> <td>81.48</td> <td>82.31</td> <td>14.28</td> <td>14.00</td> <td>4.23</td> <td>3.84</td>	C4sH4Si 65	65	3	68		1.4619	0.8268	220.8	220.5	81.48	82.31	14.28	14.00	4.23	3.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 0.8294 262.6 262.6 82.14 82.24 14.30 14.41 3.56 9 0.8263 178.9 178.0 80.50 80.71 14.26 14.20 5.23 18 0.8284 206.8 206.0 81.20 81.47 14.28 14.24 4.52 32 0.8294 234.7 234.3 81.73 81.65 14.30 14.45 3.98 40 0.8304 262.6 262.4 82.14 82.25 14.30 14.45 3.98 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 TABLE II TABLE II	$n-C_{12}H_{25}$ C48H ₁₀₀ Si 90 23	6	Ň	80		1.4630	0.8276	234.7	234.4	81.73	81.83	14.30	14.31	3.98	4.21
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9 0.8263 178.9 178.0 80.50 80.71 14.26 14.20 5.23 18 0.8284 206.8 206.0 81.20 81.47 14.28 14.24 4.52 32 0.8294 234.7 234.3 81.73 81.65 14.30 14.45 3.98 32 0.8294 234.7 234.3 81.73 81.65 14.30 14.45 3.98 40 0.8304 262.6 262.4 82.14 82.25 14.30 14.32 3.56 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 TABLE II	CaH ₁₁₂ Si 75	15	30	ច		1.4638	0.8294	262.6	262.6	82.14	82.24	14.30	14.41	3.56	3.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18 0.8284 206.8 206.0 81.20 81.47 14.28 14.24 4.52 32 0.8294 234.7 234.3 81.73 81.65 14.45 3.98 40 0.8304 236.6 262.4 82.14 82.25 14.30 14.45 3.98 48 0.8301 262.6 262.4 82.14 82.25 14.30 14.32 3.56 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 49 7 74.81 14.26 3.22 3.22 3.56 40 14.51 82.550 14.31 14.26 3.22 41 14.51 14.26 3.22 3.22 41 14.51 14.26 3.22 41 14.51 14.26 3.22 41 14.51 14.26 3.22 41 14.51 14.26 3.22	$C_{36}H_{76}S_1$ 79	79	50	6		1.4599	0.8263	178.9	178.0	80.50	80.71	14.26	14.20	5.23	5.22
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 0.8294 234.7 234.3 81.73 81.65 14.30 14.45 3.98 40 0.8304 262.6 262.4 82.14 82.25 14.30 14.32 3.56 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 . TABLE II	C42HasSi 87	28	õ	00		1.4618	0.8284	206.8	206.0	81.20	81.47	14.28	14.24	4.52	4.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 0.8304 262.6 262.4 82.14 82.25 14.30 14.32 3.56 48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.22 . TABLE II	i 93		0	83		1.4632	0.8294	234.7	234.3	81.73		14.30	14.45	3.98	4.12
0.10 1.4648 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 0.8321 290.5 290.1 82.48 82.50 14.31 14.26 3.	C ₅₄ H ₁₁₂ Si 855			296		1.4640	0.8304	262.6	262.4	82.14	82.25	14.30	14.32	3.56	3.60
	ories, Woodside, N. J.		C ₆₀ H ₁₂₄ Si	81		323		1.4648	0.8321	290.5	290.1	82.48		14.31		3.22	3.18
TABLE II Di(n-dodecyl)dialkyisilanes, (n-C12H23)51R2	${ m Di}(n ext{-dodeCyL})$ dialkylshlanes, $(n ext{-}C_{12}{ m H}_{23})_{ m S}{ m Ir}{ m R}_{2}$												Analyse	Sa			
TABLE II D1(n-dodecyl)dialkylsilianes, (n-C12H25) ₂ SiR2 Analyses ^a		Analyses ^a															

										Ana	Analyses			
	Empirical	Yield.					W	MR _D	Carbo	Carbon, %	Hydrogen, %	țen, %	Silie	Silicon, %
R	Formula	%	B.P.	Mm.	$n_{ m D}^{25}$	d_{4}^{25}	Caled.	Found	Calcd.	Found	Caled.	Found	Calcd.	Found
CH3	C ₂₆ H ₅₆ Si	88.5	177	0.12	1.4507	0.8064	132.4	132.4	78.69	78.75	14.27	14.12	7.08	7.19
C,H,	C ₃₈ H ₆₀ Si	83.0	197	0.17	1.4563	0.8159	141.7	141.6	79.15	79.22	14.24	14.09	6.61	6.80
n-C _a H,	CanHaSi	88.2	208	0.50	1.4572	0.8181	151.0	150.8	79.55	79.52	14.24	14.00	6.20	6.00
$n-C_4H_9$	CarHaSi	81.5	185	0.05	1.4579	0.8192	160.3	160.2	79.91	80.19	14.26	13.96	5.84	5.63
n-C ₅ H ₁₁	$C_{34}H_{72}Si$	75.0	202	0.08	1.4585	0.5204	169.6	169.4	80.22	80.29	14.26	13.95	5.52	5.56
$n-C_{6}H_{12}$	$C_{36}H_{76}Si$	61.0	209	0.04	1.4594	0.8212	178.9	178.9	80.50	80.61	14.26	14.00	5.23	5.39
n-C ₇ H.	C ₃₈ H ₄₀ Si	82.8	228	0.15	1.4599	0.8211	188.2	188.2	80.76	80.74	14.27	14.11	4.97	5.18
$n-C_{n-1}$	C40H&Si	73.0	256	0.12	1.4605	0.8261	197.5	197.3	80.99	14.27	14.27	14.17	4.74	4.74
u-C,H,	C42HasSi	77.3	263	0.06	1.4609	0.8250	206.8	206.6	81.20	81.27	14.28	14.34	4.52	4.76
n-C ₁₀ H ₂₁	C4H .Si	75.5	259	0.25	1.4615	0.8259	216.1	215.9	81.39	81.44	14.28	14.15	4.33	4.71
$n-C_{13}H_{23}$	C46H ₉₆ Si	80.0	260	0.01	1.4619	0.8266	225.4	225.2	81.57	81.72	14.29	14.26	4.15	4.24
$n-C_{n}H_{ss}$	C48H100Si	79.8	280	0.13	1.4622	0.8276	234.7	234.4	81.73	81.83	14.29	14.31	3.98	4.21
$n-C_{1,H_{29}}$	C ₅₂ H ₁₀₈ Si	79.0	290	0.05	1.4635	0.8309	253.3	252.6	82.01	81.95	14.30	14.12	3.69	4.27
$n-\mathrm{C}_{18}\mathrm{H}_{37}$	$C_{60}H_{124}Si$	86.5	355	0.10	1.4648	0.8337	290.5	290.1	82.52	82.48	14.30	14.12	3.20	3.87

FEBRUARY 1960

SYNTHESIS OF SOME TETRAALKYLSILANES

dodecyl)dichlorosilane in 100 ml. of anhydrous ethyl ether over a period of 2 hr. After the addition was completed the mixture was stirred for an additional hour and then refluxed overnight (ca. 20 hr.). The excess lithium particles were filtered off with suction and the filtrate was poured slowly over ice to decompose the excess alkyllithium. The solution was then neutralized with 3N hydrochloric acid and the ether layer phase separated. The water layer was extracted three times with 100 ml. of ethyl ether and the extracts, together with the ether layer, were dried over anhydrous calcium sulfate. After removal of the ether by distillation, fractionation of the liquid residue through a 30-cm. shortpath Vigreux column gave 59.1 gm. (61.0%) of the product, b.p. 209° (0.04 mm.), n_D^{25} 1.4594, d_4^{25} 0.8212. See Table II for analysis

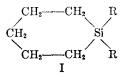
Di(n-dodecyl)diphenylsilane. This aralkyl derivative, as well as the corresponding dimethyl and diethyl derivatives, was prepared by the reverse reaction of that used for the preparation of the di(n-dodecyl)dialkylsilanes. Thus, 127.0 g. (0.5 mol.) of diphenyldichlorosilane was added dropwise to an ether solution of 1.4 mol. of n-dodecyllithium (prepared by the same procedure used for the n-hexyllithium described above) over a period of 4 hr. The mixture was stirred for an additional hour and the unreacted lithium metal and salts were removed by suction filtration. The filtrate was treated in the same manner as described in the preparation of the di(n-dodecyl)di(n-hexyl)silane. The product was obtained, upon fractional distillation through a glass helices-packed column, as a colorless liquid, weighing 17.4 g. (79.1%), b.p. 216° (0.05 mm.), n_D^{25} 1.5053, d_4^{25} 0.9023.

Anal. Calcd. for C36H60Si: Si, 5.39; MRD, 171.45. Found, Si, 5.68; MR_D, 171.30.

Acknowledgment. The authors gratefully acknowledge the technical assistance of Dr. Marvin Rausch in this investigation.

WRIGHT-PATTERSON AIR FORCE BASE, OHIO

[CONTRIBUTION FROM MATERIALS LABORATORY, WRIGHT AIR DEVELOPMENT CENTER]


Organosilicon Compounds. II. 1,1-Disubstituted Silacyclohexanes

CHRIST TAMBORSKI AND HAROLD ROSENBERG

Received Sept. 10, 1958

1,1-Disubstituted-silacyclohexanes were prepared by the reaction of 1,1-dichlorosilacyclohexane with an alkyl- or aryllithium compound. Attempts to effect cyclization of 1,5-dilithiopentane and a dialkyl(or diaryl)dichlorosilane were unsuccessful. Certain physical properties of the 1,1-dialkylsilacyclohexanes are presented.

In the first paper of this series,¹ the preparation and properties of two classes of long-chain tetraalkylsilanes were reported as part of a program on thermally stable fluids in which various properties of different types of organosilanes were correlated with molecular structure. The present paper describes the synthesis and properties of a series of cyclic organosilicon compounds, the 1,1-disubstituted-silacyclohexanes. In this class of compounds, represented by I, silicon is contained in a six-

membered ring in which two alkyl or aryl groups are attached to the heterocyclic atom.

A review of previous attempts to prepare cyclic organosilicon compounds is contained in a paper by West.² The first 1,1-disubstituted-silacyclohexane to be prepared was reported by Bygden³ more than forty years ago. He synthesized 1,1-dimethylsilacyclohexane by reacting methylmagnesium bromide with 1,1-dichlorosilacyclohexane, which was prepared from the Grignard reagent of 1,5-dibromopentane and silicon tetrachloride.

 $BrMg(CH_2)_{\delta}MgBr + SiCl_4 \longrightarrow$ (CH₂)_{δ}SiCl₂ + 2MgBrC₁

 $(CH_2)_{b}SiCl_2 + 2CH_3MgBr \longrightarrow$ $(CH_2)_{b}Si(CH_3)_2 + 2MgBrCl$

This compound was also prepared by West² in somewhat greater yield (72%) by the reaction of 1-chloro-1-methylsilacyclohexane with the Grignard reagent obtained from methyl iodide. The only other compound of this type described in the literature is the diethyl derivative of I, 1,1-diethylsilacyclohexane.⁴ This was apparently prepared through a Wurtz type reaction in which a mixture of 1,5-dibromopentane and diethyldichlorosilane was treated with sodium metal. However, no details of the synthetic procedure used, yield

$$\frac{\operatorname{Br}(\operatorname{CH}_2)_{\mathfrak{b}}\operatorname{Br} + (\operatorname{C}_2\operatorname{H}_{\mathfrak{b}})_2\operatorname{Sicl}_2 + 2\operatorname{Na} \longrightarrow}{(\operatorname{CH}_2)_{\mathfrak{b}}\operatorname{Si}(\operatorname{C}_2\operatorname{H}_{\mathfrak{b}})_2 + 2\operatorname{NaCl}}$$

obtained, or physical properties of the product were reported.

Bygden³ also attempted the preparation of the diethyl derivative by the reaction of the Grignard reagent of 1,5-dibromopentane and diethyldichlorosilane but failed to obtain a pure product.

In the present work, a series of alkyl derivatives of I was prepared in good yield by the reaction of 1,1-dichlorosilacyclohexane with an alkyllithium in a 1 to 2 molar ratio:

$$(CH_2)_bSi(Cl)_2 + 2RLi \longrightarrow I + 2LiCl$$

(4) G. Gruttner and M. Wiernik, ibid., 48, 1474 (1915).

⁽¹⁾ H. Rosenberg, J. D. Groves, and C. Tamborski, J. Org. Chem., 25, 243 (1960).

⁽²⁾ R. West, J. Am. Chem. Soc., 76, 6012 (1954).

⁽³⁾ A. Bygden, Ber., 48, 1236 (1915).